Chemical Equilibrium Review

- 1. Which of the following statements concerning chemical equilibrium is incorrect?
 - A) Chemical equilibrium can occur at different temperatures.
 - B) Chemical equilibrium may be established quickly.
 - C) Chemical equilibrium may be established slowly.
 - D) When chemical equilibrium is established, the reaction stops.
- For the closed system below, the temperature is held constant. Which one of the following 2. statements concerning this system at equilibrium is false?

- A) There is no further evaporation of the liquid.
- B) There is no change in pressure of the vapour phase.
- C) There is no change in colour of the liquid phase.
- D) The amount of solid iodine remains constant.
- Which equilibrium system will contain the largest concentration of products at 25°C? 3. $K_c = 8.5 \times 10^{-17}$
 - A) $AgI(s) \leftrightarrow Ag^{+}(aq) + I^{-}(aq)$
 - B) $HC_2H_3O_2(aq) \leftrightarrow H^+(aq) + C_2H_3O_2(aq)$ $K_c = 1.8 \times 10^{-5}$
 - C) $Pb^{+2}(aq) + 2 Cl^{-}(aq) \leftrightarrow PbCl_2(s)$
 - $K_c = 6.3 \times 10^4$ D) $Cu(s) + 2Ag^{+}(aq) \leftrightarrow Cu^{+2}(aq) + 2Ag(s)$ $K_c = 2.0x10^{15}$
- What will be the effect of adding some solid AgNO₃ to a saturated solution of AgCl? 4.
 - A) The AgNO₃ will not dissolve.
 - B) More solid AgCl will dissolve.
 - C) More solid AgCl will be produced.
 - D) The AgNO₃ will not affect the AgCl equilibrium.
- 5. Which of the following has the lowest molar solubility?
 - $Ksp = 6.6x10^{-9}$ A) NiCO₃
 - $Ksp = 3.0x10^{-23}$ B) Ni(CN)₂
 - C) $Ni(OH)_2$ Ksp = 2.8×10^{-16}
 - $Ksp = 3.0x10^{-21}$ D) NiS

- 6. Consider the reaction: $BaCO_3(s) + heat \leftrightarrow BaO(s) + CO_2(g)$. Suggest a way that one could tell if the reaction has reached equilibrium.
- 7. In a 1.0 L vessel, a mixture of hydrogen and nitrogen are allowed to come to equilibrium at a specific temperature according to the reaction: $3 H_2(g) + N_2(g) \leftrightarrow 2 NH_3(g)$. Analysis of the equilibrium mixture shows that it contains 1.5 mols NH₃, 2.0 mols N₂, and 3.0 mols H₂. How many mols of H₂ were present at the beginning of the reaction?
- 8. The following graph shows the concentrations of species A, B and C.

- 9. State what changes in **temperature** or **concentration** are responsible for each of the shifts shown on the graph. The equilibrium equation is: $A(g) + B(g) \leftrightarrow C(g) \quad \Delta H = -65 \text{ kJ}$
- 10. The graph below shows the variation of concentration with time for the following reaction: $3A(aq) \leftrightarrow B(aq) + 2C(aq) \text{ at } 25^{\circ}C.$

What is the value of the equilibrium constant at time t₂?

11. Write the reaction represented by the equilibrium expression: $K_c = \frac{[C]^2}{[A]^3[B]}$.

- 12. Consider the reaction: NaI(aq) + H₂SO₄(aq) ↔ NaHSO₄(aq) + HI(aq). The equilibrium constant is 7.3x10⁻⁴. If the equilibrium concentrations of H₂SO₄, NaHSO₄ and HI are 2.1x10⁻¹ mol/L, 3.2x10⁻² mol/L and 4.6x10⁻⁴ mol/L respectively, what is the concentration of NaI?
- 13. Consider the following equilibrium: $2N_2O(g) \leftrightarrow 2N_2(g) + O_2(g)$. Initially, 0.800 mol of N_2O is placed in a 1.0 L container. At equilibrium, the $[N_2]$ is found to be 0.780 mol/L. What is the value of K_c ?
- 14. Consider the following reaction: $2SO_2(g) + O_2(g) \leftrightarrow 2SO_3(g) \Delta H = -200 \text{ kJ/mol.}$
 - a. What change(s) will increase equilibrium concentrations of SO₂(g)?
 - b. What will adding a catalyst to the system at equilibrium do?
- 15. When $Fe(OH)_2$ dissolves to create a saturated solution, the concentration of OH⁻ is 2.50×10^{-5} mol/L. What is the value of K_{sp} for Fe(OH)₂?
- 16. How many grams of BaCO₃ will dissolve in 1.2 L of water? ($K_{sp} = 5.1 \times 10^{-9}$)
- 17. Give the expression for the K_{sp} of bismuth (III) iodide.
- 18. Indicate whether the following compounds are soluble or insoluble in water.
 - a. PbCl₂
 - b. BaCO₃
 - c. AlPO₄
- 19. How many moles of Mg(OH)₂ can be precipitated when 15 mL of 0.20 mol/L MgCl₂ solution is mixed with 25 mL of 0.18 mol/L KOH assuming the reaction goes to completion?
- 20. Solutions of lead (II) nitrate and potassium bromide are mixed. Give the net ionic equation for the precipitation reaction.
- 21. Calculate the solubility in g/L of Silver Chloride in water and in a 6.5×10^{-3} mol/L silver nitrate solution. K_{sp} of AgCl = 1.6×10^{-10} .
- 22. Explain, using reactions, why the solubility of ZnS ($K_{sp} = 2.0 \times 10^{-25}$) is greater in nitric acid than in pure water.